Physics-Informed Neural Networks (PINNs) have emerged recently as a promising application of deep neural networks to the numerical solution of nonlinear partial differential equations (PDEs). However, the original PINN algorithm is known to suffer from stability and accuracy problems in cases where the solution has sharp spatio-temporal transitions. These stiff PDEs require an unreasonably large number of collocation points to be solved accurately. It has been recognized that adaptive procedures are needed to force the neural network to fit accurately the stubborn spots in the solution of stiff PDEs. To accomplish this, previous approaches have used fixed weights hard-coded over regions of the solution deemed to be important. In this paper, we propose a fundamentally new method to train PINNs adaptively, where the adaptation weights are fully trainable, so the neural network learns by itself which regions of the solution are difficult and is forced to focus on them, which is reminiscent of soft multiplicative-mask attention mechanism used in computer vision. The basic idea behind these Self-Adaptive PINNs is to make the weights increase where the corresponding loss is higher, which is accomplished by training the network to simultaneously minimize the losses and maximize the weights, i.e., to find a saddle point in the cost surface. We show that this is formally equivalent to solving a PDE-constrained optimization problem using a penalty-based method, though in a way where the monotonically-nondecreasing penalty coefficients are trainable. Numerical experiments with an Allen-Cahn stiff PDE, the Self-Adaptive PINN outperformed other state-of-the-art PINN algorithms in L2 error by a wide margin, while using a smaller number of training epochs. An Appendix contains additional results with Burger's and Helmholtz PDEs, which confirmed the trends observed in the Allen-Cahn experiments.


翻译:物理进化的神经网络(PINNs)最近作为极好的深度神经网络应用而出现,这是对非线性部分差异方程式(PDCs)数字解决方案的一种有希望的运用。然而,已知最初的PINN算法在解决方案出现急剧的时空转型的情况下会遇到稳定性和准确性问题。这些硬性神经网络需要大量不合理的合用点才能准确解决。人们认识到,需要适应程序来迫使神经网络准确匹配硬性PDES解决方案的顽固点。为了实现这一点,以前的方法在认为重要的解决方案区域中使用了固定的重力硬编码。在本文中,我们提出了一种根本的新方法来训练PINNs的稳定性和准确性问题,在轨迹中,在OrmalC中,在OrmalCs 中,在Oral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-l-ral-ral-ral-ral-l-l-ral-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Local Relation Networks for Image Recognition
Arxiv
4+阅读 · 2019年4月25日
Arxiv
3+阅读 · 2018年10月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员