While object detection modules are essential functionalities for any autonomous vehicle, the performance of such modules that are implemented using deep neural networks can be, in many cases, unreliable. In this paper, we develop abstraction-based monitoring as a logical framework for filtering potentially erroneous detection results. Concretely, we consider two types of abstraction, namely data-label abstraction and post-algorithm abstraction. Operated on the training dataset, the construction of data-label abstraction iterates each input, aggregates region-wise information over its associated labels, and stores the vector under a finite history length. Post-algorithm abstraction builds an abstract transformer for the tracking algorithm. Elements being associated together by the abstract transformer can be checked against consistency over their original values. We have implemented the overall framework to a research prototype and validated it using publicly available object detection datasets.
翻译:虽然物体探测模块是任何自主工具的基本功能,但使用深神经网络实施的此类模块的性能在许多情况下可能不可靠。 在本文中,我们开发基于抽象的监测作为过滤潜在错误检测结果的逻辑框架。具体地说,我们考虑两类抽象,即数据标签抽象和后等分数抽象。在培训数据集上操作,数据标签抽象离子转换每个输入,将区域信息汇总到相关标签上,并将矢量存储在有限的历史长度下。后等离子抽象抽象为跟踪算法建立一个抽象变异器。可以对照抽象变异器所连接的元素与其原始值的一致性进行检查。我们已经将总体框架应用于研究原型,并使用公开的物体探测数据集验证了它。