We introduce computationally simple, data-driven procedures for estimation and inference on a structural function $h_0$ and its derivatives in nonparametric models using instrumental variables. Our first procedure is a bootstrap-based, data-driven choice of sieve dimension for sieve nonparametric instrumental variables (NPIV) estimators. When implemented with this data-driven choice, sieve NPIV estimators of $h_0$ and its derivatives are adaptive: they converge at the best possible (i.e., minimax) sup-norm rate, without having to know the smoothness of $h_0$, degree of endogeneity of the regressors, or instrument strength. Our second procedure is a data-driven approach for constructing honest and adaptive uniform confidence bands (UCBs) for $h_0$ and its derivatives. Our data-driven UCBs guarantee coverage for $h_0$ and its derivatives uniformly over a generic class of data-generating processes (honesty) and contract at, or within a logarithmic factor of, the minimax sup-norm rate (adaptivity). As such, our data-driven UCBs deliver asymptotic efficiency gains relative to UCBs constructed via the usual approach of undersmoothing. In addition, both our procedures apply to nonparametric regression as a special case. We use our procedures to estimate and perform inference on a nonparametric gravity equation for the intensive margin of firm exports and find evidence against common parameterizations of the distribution of unobserved firm productivity.
翻译:我们引入了计算简单、数据驱动的程序,用于估算和推断使用工具变量的结构性函数$h_0美元及其在非参数模型中的衍生物。 我们的第一个程序是以数据驱动的估算值( NPIV) 估测值。 当根据数据驱动选择实施时, Sieve NPIV 估计值$0美元及其衍生物的估算值是适应性的: 它们以尽可能好的方式( 即, 最密集的) 上调率汇合在一起, 而不需了解 $_0 的平滑度、 递增者或仪器强度的内分率程度。 我们的第二个程序是用数据驱动法来构建诚实和适应性的统一信任度( UCB ) 。 我们的数据驱动UCBs的估算值保证了$0美元及其衍生物的覆盖率, 与一般数据生成流程( 测得精度) 和 合同在非逻辑化系数内, 将我们常规的Uxmoxx- 递增率( ) 用于我们常规的Uxxxxxxxxxxil-