Extreme-value copulas arise as the limiting dependence structure of component-wise maxima. Defined in terms of a functional parameter, they are one of the most widespread copula families due to its flexibility and ability to capture asymmetry. Despite this, meeting the complex analytical properties of this parameter in an unconstrained setting still remains a challenge, restricting most uses to either models with very few parameters or non-parametric models. On this paper we focus on the bivariate case and propose a novel approach for estimating this functional parameter in a semiparametric manner. Our procedure relies on a series of basic transformations starting from a zero-integral spline. Spline coordinates are fit through maximum likelihood estimation, leveraging gradient optimization, without imposing further constraints. We conduct several experiments on both simulated and real data. Specifically, we test our method on scarce data gathered by the gravitational wave detection LIGO and Virgo collaborations.
翻译:极值相生物作为组件最大值的极限依赖性结构产生。 从功能参数的角度界定,它们是最广泛的相生物家庭之一,因为它具有灵活性和捕捉不对称的能力。尽管如此,在不受限制的环境中满足这一参数的复杂分析特性仍是一个挑战,将大多数用途限制在参数非常少的模型或非参数模型上。在这份文件上,我们侧重于双变量案例,并提出了以半参数方式估计这一功能参数的新办法。我们的程序依赖于从零一星螺旋线开始的一系列基本变换。通过最大可能性估计、利用梯度优化和不施加进一步的限制,Spline坐标是适合的。我们在模拟数据和真实数据上进行若干试验。具体地说,我们测试的是引力波探测LIGO和Virgo合作所收集的稀缺数据。