In this work, we propose the BioNetExplorer framework to systematically generate and explore multiple DNN architectures for bio-signal processing in wearables. Our framework adapts key neural architecture parameters to search for an embedded DNN with a low hardware overhead, which can be deployed in wearable edge devices to analyse the bio-signal data and to extract the relevant information, such as arrhythmia and seizure. Our framework also enables hardware-aware DNN architecture search using genetic algorithms by imposing user requirements and hardware constraints (storage, FLOPs, etc.) during the exploration stage, thereby limiting the number of networks explored. Moreover, BioNetExplorer can also be used to search for DNNs based on the user-required output classes; for instance, a user might require a specific output class due to genetic predisposition or a pre-existing heart condition. The use of genetic algorithms reduces the exploration time, on average, by 9x, compared to exhaustive exploration. We are successful in identifying Pareto-optimal designs, which can reduce the storage overhead of the DNN by ~30MB for a quality loss of less than 0.5%. To enable low-cost embedded DNNs, BioNetExplorer also employs different model compression techniques to further reduce the storage overhead of the network by up to 53x for a quality loss of <0.2%.
翻译:在这项工作中,我们建议生物NetExplorer 框架系统生成和探索多种 DNN 结构,用于磨损式生物信号处理。我们的框架调整关键神经结构参数,以寻找嵌入的DNN, 其硬件管理费用低,可部署在可磨损边缘设备中,以分析生物信号数据并提取相关信息,如心律失常和抓获。我们的框架还能够利用遗传算法,在勘探阶段通过强加用户要求和硬件限制(存储、FLOPs等)来进行硬件觉悟 DNN 结构搜索,从而限制所探索的网络数量。此外,BioNetExplorer 还可以用于搜索基于用户要求输出等级的嵌入式 DNNN, 其硬件管理费用低;例如,用户可能需要因基因偏好或先存状态而需要特定的产出类别。使用基因算法,平均减少9x的勘探时间。我们成功地确定了Preto-opimal 设计,这样可以降低 DNNW 的存储量,通过 ~30MB 服务器的低成本存储率将D的存储量降为0.5。