Functional Time Series are sequences of dependent random elements taking values on some functional space. Most of the research on this domain is focused on producing a predictor able to forecast the value of the next function having observed a part of the sequence. For this, the Autoregresive Hilbertian process is a suitable framework. We address here the problem of constructing simultaneous predictive confidence bands for a stationary functional time series. The method is based on an entropy measure for stochastic processes, in particular functional time series. To construct predictive bands we use a functional bootstrap procedure that allow us to estimate the prediction law through the use of pseudo-predictions. Each pseudo-realisation is then projected into a space of finite dimension, associated to a functional basis. We use Reproducing Kernel Hilbert Spaces (RKHS) to represent the functions, considering then the basis associated to the reproducing kernel. Using a simple decision rule, we classify the points on the projected space among those belonging to the minimum entropy set and those that do not. We push back the minimum entropy set to the functional space and construct a band using the regularity property of the RKHS. The proposed methodology is illustrated through artificial and real-world data sets.


翻译:功能时间序列是依附随机元素序列的序列,在某个功能空间上取值。 有关此域的大部分研究侧重于制作能够预测下一个函数值的预测器, 并观察了该序列的一部分。 为此, 自动测试Hilbertian 进程是一个合适的框架。 我们在这里处理为固定功能时间序列同时构建同步预测信任带的问题。 方法基于随机过程的酶测量, 特别是功能时间序列。 构建一个预测带, 我们使用一个功能套件程序, 使我们能够通过使用伪密码来估计预测法。 每个假变现都预测成一个有限空间, 与功能基础相关。 我们使用Recentle Hilbert Space( RKHS) 来代表该功能, 然后考虑与再生产核心序列相关的基础。 我们使用简单的决策规则, 将预测空间的预测点与属于最小酶集的人和不具有功能时间序列的人之间的点进行分类。 我们把最小的酶定位设到功能空间, 并用正常的方法构建一个波段。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
盘一盘 Python 系列 8 - Sklearn
平均机器
5+阅读 · 2019年5月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月17日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
盘一盘 Python 系列 8 - Sklearn
平均机器
5+阅读 · 2019年5月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员