This paper is concerned with the statistical analysis of matrix-valued time series. These are data collected over a network of sensors (typically a set of spatial locations), recording, over time, observations of multiple measurements. From such data, we propose to learn, in an online fashion, a graph that captures two aspects of dependency: one describing the sparse spatial relationship between sensors, and the other characterizing the measurement relationship. To this purpose, we introduce a novel multivariate autoregressive model to infer the graph topology encoded in the coefficient matrix which captures the sparse Granger causality dependency structure present in such matrix-valued time series. We decompose the graph by imposing a Kronecker sum structure on the coefficient matrix. We develop two online approaches to learn the graph in a recursive way. The first one uses Wald test for the projected OLS estimation, where we derive the asymptotic distribution for the estimator. For the second one, we formalize a Lasso-type optimization problem. We rely on homotopy algorithms to derive updating rules for estimating the coefficient matrix. Furthermore, we provide an adaptive tuning procedure for the regularization parameter. Numerical experiments using both synthetic and real data, are performed to support the effectiveness of the proposed learning approaches.


翻译:本文涉及对矩阵估计时间序列的统计分析。 这些数据是通过传感器网络( 通常是一组空间位置)收集的, 记录了一段时间内对多种测量的观测。 我们建议从这些数据中, 以在线方式学习一个图表, 记录依赖性的两个方面: 一个描述传感器之间的空间关系稀少, 以及测量关系的其他特征。 为此, 我们引入了一个新的多变量自动递增模型模型, 以推断系数矩阵中包含的图形表层编码的图形表层结构。 该模型包含在这种矩阵估计时间序列中存在的稀有的重生因果依赖性结构。 我们通过在系数矩阵中设置一个 Kronecker 和 结构来解析该图。 我们开发了两种在线方法, 以循环的方式学习图形。 第一个是将Wald 测试用于预测的 OSLS 估计, 我们从中得出测量器的无源分布分布。 第二个是, 我们正式确定一个激光类型优化的问题。 我们依靠同质调算算算法来得出估算系数矩阵中存在的稀少的参数。 此外, 我们提供一种在线的调整性调整方法, 用于对正统化数据进行合成测试。 。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年4月10日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Lifelong Graph Learning
Arxiv
0+阅读 · 2021年9月16日
Arxiv
19+阅读 · 2020年7月13日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年4月10日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Lifelong Graph Learning
Arxiv
0+阅读 · 2021年9月16日
Arxiv
19+阅读 · 2020年7月13日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
8+阅读 · 2018年5月15日
Top
微信扫码咨询专知VIP会员