We extend the theoretical results for any FOU(p) processes for the case in which the Hurst parameter is less than 1/2 and we show theoretically and by simulations that under some conditions on T and the sample size n it is possible to obtain consistent estimators of the parameters when the process is observed in a discretized and equispaced interval [0, T ]. Also we will show that the FOU(p) processes can be used to model a wide range of time series varying from short range dependence to large range dependence with similar results as the ARMA or ARFIMA models, and in several cases outperforms those. Lastly, we give a way to obtain explicit formulas for the auto-covariance function for any FOU(p) and we present an application for FOU(2) and FOU(3).


翻译:在Hurst参数小于1/2并且我们从理论上和模拟中显示,在T和样本大小的某些条件下,如果在离散和平衡的间隔[0,T]内观测到参数,则有可能获得参数的一致估计值。 我们还将显示,FOU(p)进程可以用来模拟一系列广泛的时间序列,从短距离依赖到大范围依赖,其结果与ARMA或ARFIMA模型类似,在若干情况下,比这些结果要好。最后,我们给为任何FOU(p)的自动可变函数获得明确公式提供一条途径,我们为FO(2)和FOU(3)提供一个应用程序。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
7+阅读 · 2018年8月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
7+阅读 · 2018年8月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员