Under the framework of reproducing kernel Hilbert space (RKHS), we consider the penalized least-squares of the partially functional linear models (PFLM), whose predictor contains both functional and traditional multivariate part, and the multivariate part allows a divergent number of parameters. From the non-asymptotic point of view, we focus on the rate-optimal upper and lower bounds of the prediction error. An exact upper bound for the excess prediction risk is shown in a non-asymptotic form under a more general assumption known as the effective dimension to the model, by which we also show the prediction consistency when the number of multivariate covariates $p$ slightly increases with the sample size $n$. Our new finding implies a trade-off between the number of non-functional predictors and the effective dimension of the kernel principal components to ensure the prediction consistency in the increasing-dimensional setting. The analysis in our proof hinges on the spectral condition of the sandwich operator of the covariance operator and the reproducing kernel, and on the concentration inequalities for the random elements in Hilbert space. Finally, we derive the non-asymptotic minimax lower bound under the regularity assumption of Kullback-Leibler divergence of the models.
翻译:在复制核心Hilbert空间(RKHS)的框架内,我们考虑了部分功能性线性模型(PFLM)中最受处罚的最小部分,其预测器含有功能性和传统多变量部分,而多变量部分允许不同的参数。从非零用观点看,我们侧重于预测错误的超优率最高和下限。超额预测风险的准确上限以非零用形式显示,其一般假设称为该模型的有效层面,我们通过这一假设也显示了预测的一致性,当多变量共变数的数量与样本大小略有增加时,我们通过这种假设也显示了预测的一致性。我们的新发现意味着,在非功能性预测器的数量和内核主要组成部分的有效层面之间要进行权衡,以确保预测在不断增长的方位设置中的一致性。我们的证据分析取决于变量操作器和再生内核的三明治操作器的光谱性状况,以及恒定的低位模型在正常水平差位空间的随机值的浓度不平等性。最后,我们从中得出了低位模型。