Quasi-Maximum Likelihood (QML) procedures are theoretically appealing and widely used for statistical inference. While there are extensive references on QML estimation in batch settings, it has attracted little attention in streaming settings until recently. An investigation of the convergence properties of the QML procedure in a general conditionally heteroscedastic time series model is conducted, and the classical batch optimization routines extended to the framework of streaming and large-scale problems. An adaptive recursive estimation routine for GARCH models named AdaVol is presented. The AdaVol procedure relies on stochastic approximations combined with the technique of Variance Targeting Estimation (VTE). This recursive method has computationally efficient properties, while VTE alleviates some convergence difficulties encountered by the usual QML estimation due to a lack of convexity. Empirical results demonstrate a favorable trade-off between AdaVol's stability and the ability to adapt to time-varying estimates for real-life data.


翻译:Qasi-Meximum Lilishood(QML)程序在理论上具有吸引力,并广泛用于统计推论。尽管批量设置中大量提到QML估算,但直到最近,在流流设置中却很少引起注意。在一般的有条件混杂时间序列模型中,对QML程序的趋同特性进行了调查,并将典型的批量优化程序扩大到流流和大规模问题的框架。介绍了名为AdaVol的GRCH模型的适应性循环估算例行程序。AdaVol程序依赖于随机近似,同时采用差异定向估计技术。这一递归方法计算了效率,同时,VTE减轻了通常的QML估计由于缺乏混杂性而遇到的一些趋同困难。经验性结果表明AdaVol的稳定性与适应实时数据时间变化估计的能力之间的有利权衡。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
171+阅读 · 2020年2月13日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
VALSE Webinar 特别专题之产学研共舞VALSE
VALSE
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年3月8日
Arxiv
0+阅读 · 2021年3月5日
Arxiv
5+阅读 · 2020年3月16日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
171+阅读 · 2020年2月13日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
Top
微信扫码咨询专知VIP会员