Most currently available methods for modeling multiphysics, including thermoelasticity, using machine learning approaches, are focused on solving complete multiphysics problems using data-driven or physics-informed multi-layer perceptron (MLP) networks. Such models rely on incremental step-wise training of the MLPs, and lead to elevated computational expense; they also lack the rigor of existing numerical methods like the finite element method. We propose an integrated finite element neural network (I-FENN) framework to expedite the solution of coupled transient thermoelasticity. A novel physics-informed temporal convolutional network (PI-TCN) is developed and embedded within the finite element framework to leverage the fast inference of neural networks (NNs). The PI-TCN model captures some of the fields in the multiphysics problem; then, the network output is used to compute the other fields of interest using the finite element method. We establish a framework that computationally decouples the energy equation from the linear momentum equation. We first develop a PI-TCN model to predict the spatiotemporal evolution of the temperature field across the simulation time based on the energy equation and strain data. The PI-TCN model is integrated into the finite element framework, where the PI-TCN output (temperature) is used to introduce the temperature effect to the linear momentum equation. The finite element problem is solved using the implicit Euler time discretization scheme, resulting in a computational cost comparable to that of a weakly-coupled thermoelasticity problem but with the ability to solve fully-coupled problems. Finally, we demonstrate I-FENN's computational efficiency and generalization capability in thermoelasticity through several numerical examples.
翻译:暂无翻译