We investigate spatio-temporal event analysis using point processes. Inferring the dynamics of event sequences spatiotemporally has many practical applications including crime prediction, social media analysis, and traffic forecasting. In particular, we focus on spatio-temporal Hawkes processes that are commonly used due to their capability to capture excitations between event occurrences. We introduce a novel inference framework based on randomized transformations and gradient descent to learn the process. We replace the spatial kernel calculations by randomized Fourier feature-based transformations. The introduced randomization by this representation provides flexibility while modeling the spatial excitation between events. Moreover, the system described by the process is expressed within closed-form in terms of scalable matrix operations. During the optimization, we use maximum likelihood estimation approach and gradient descent while properly handling positivity and orthonormality constraints. The experiment results show the improvements achieved by the introduced method in terms of fitting capability in synthetic and real datasets with respect to the conventional inference methods in the spatio-temporal Hawkes process literature. We also analyze the triggering interactions between event types and how their dynamics change in space and time through the interpretation of learned parameters.
翻译:我们用点数过程调查时空事件分析。 假设事件序列的动态, 时空波段具有许多实际应用, 包括犯罪预测、 社交媒体分析、 交通预报等。 特别是, 我们侧重于由于能够捕捉事件发生之间的引力而常用的时空鹰波段过程。 我们引入了一个基于随机变异和梯度下降的新颖推论框架, 以了解过程。 我们用随机的 Fourier 地貌变异来取代空间内核计算。 采用这种代表方式的随机化提供了灵活性,同时模拟了事件之间的空间引力。 此外, 过程描述的系统以封闭的形式表达为可缩缩放矩阵操作。 在优化过程中, 我们使用最大可能性估计法和梯度下降法,同时妥善处理假设性和异常性限制。 实验结果显示,采用的方法在合成和真实数据集的适应能力方面,取得了改进。 与空间时空回声轴过程文献中的常规推力方法, 提供了灵活性。 我们还分析了事件类型和空间变动参数之间的触发互动, 以及空间变变的动态参数是如何在空间变化中学习的。