Most COVID-19 predictive modeling efforts use statistical or mathematical models to predict national- and state-level COVID-19 cases or deaths in the future. These approaches assume parameters such as reproduction time, test positivity rate, hospitalization rate, and social intervention effectiveness (masking, distancing, and mobility) are constant. However, the one certainty with the COVID-19 pandemic is that these parameters change over time, as well as vary across counties and states. In fact, the rate of spread over region, hospitalization rate, hospital length of stay and mortality rate, the proportion of the population that is susceptible, test positivity rate, and social behaviors can all change significantly over time. Thus, the quantification of uncertainty becomes critical in making meaningful and accurate forecasts of the future. Bayesian approaches are a natural way to fully represent this uncertainty in mathematical models and have become particularly popular in physics and engineering models. The explicit integration time varying parameters and uncertainty quantification into a hierarchical Bayesian forecast model differentiates the Mayo COVID-19 model from other forecasting models. By accounting for all sources of uncertainty in both parameter estimation as well as future trends with a Bayesian approach, the Mayo COVID-19 model accurately forecasts future cases and hospitalizations, as well as the degree of uncertainty. This approach has been remarkably accurate and a linchpin in Mayo Clinic's response to managing the COVID-19 pandemic. The model accurately predicted timing and extent of the summer and fall surges at Mayo Clinic sites, allowing hospital leadership to manage resources effectively to provide a successful pandemic response. This model has also proven to be very useful to the state of Minnesota to help guide difficult policy decisions.


翻译:COVID-19的预测性模型工作大多使用统计或数学模型来预测国家和州一级的COVID-19病例或今后死亡情况。这些方法假定了复制时间、测试活率、住院率和社会干预效力(制模、分流和流动性)等参数不变。然而,COVID-19大流行的一个确定性是,这些参数随时间而变化,以及各州和各州之间的差异。事实上,跨区域的传播速度、住院率、住院时间、住院时间、住院时间和临床死亡率、易感染人口比例、测试实情率和社会行为都可随时间而发生重大变化。因此,不确定性的量化对于对未来作出有意义和准确的预测至关重要。巴伊斯方法是完全体现数学模型中这种不确定性的自然方法,在物理学和工程模型中特别受欢迎。将参数和不确定性量化明确不同的贝伊斯预报模型将Mayo COVI-19模式与其他预测模式的有用性反应。通过计算各种不确定性的来源,同时测试未来趋势,以Bayesian 的准确的临床方法,这一5月CVI方法提供了准确的不确定性,而精确的临床的精确的精确的周期预测。

0
下载
关闭预览

相关内容

近期必读的六篇 NeurIPS 2020【因果推理】相关论文和代码
专知会员服务
71+阅读 · 2020年10月31日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICML2019机器学习顶会接受论文列表!
专知
10+阅读 · 2019年5月12日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
1+阅读 · 2021年6月3日
Arxiv
0+阅读 · 2021年6月2日
Arxiv
0+阅读 · 2021年6月1日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
3+阅读 · 2017年12月18日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICML2019机器学习顶会接受论文列表!
专知
10+阅读 · 2019年5月12日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
1+阅读 · 2021年6月3日
Arxiv
0+阅读 · 2021年6月2日
Arxiv
0+阅读 · 2021年6月1日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
3+阅读 · 2017年12月18日
Top
微信扫码咨询专知VIP会员