Temporal point processes (TPP) are probabilistic generative models for continuous-time event sequences. Neural TPPs combine the fundamental ideas from point process literature with deep learning approaches, thus enabling construction of flexible and efficient models. The topic of neural TPPs has attracted significant attention in the recent years, leading to the development of numerous new architectures and applications for this class of models. In this review paper we aim to consolidate the existing body of knowledge on neural TPPs. Specifically, we focus on important design choices and general principles for defining neural TPP models. Next, we provide an overview of application areas commonly considered in the literature. We conclude this survey with the list of open challenges and important directions for future work in the field of neural TPPs.
翻译:时间点过程(TPP)是连续时间事件序列的概率遗传模型。神经过程TPP将点点文献的基本想法与深层学习方法结合起来,从而能够构建灵活而高效的模式。神经过程过程(TPP)近年来引起了人们的极大关注,导致为这一类模型开发了许多新的结构和应用。在本审查文件中,我们的目标是巩固关于神经过程过程的现有知识。具体地说,我们侧重于重要的设计选择和界定神经过程模型的一般原则。接下来,我们概述了文献中通常考虑的应用领域。我们以神经过程模型领域未来工作的公开挑战和重要方向清单来结束这一调查。