A significant body of research in the data sciences considers unfair discrimination against social categories such as race or gender that could occur or be amplified as a result of algorithmic decisions. Simultaneously, real-world disparities continue to exist, even before algorithmic decisions are made. In this work, we draw on insights from the social sciences and humanistic studies brought into the realm of causal modeling and constrained optimization, and develop a novel algorithmic framework for tackling pre-existing real-world disparities. The purpose of our framework, which we call the "impact remediation framework," is to measure real-world disparities and discover the optimal intervention policies that could help improve equity or access to opportunity for those who are underserved with respect to an outcome of interest. We develop a disaggregated approach to tackling pre-existing disparities that relaxes the typical set of assumptions required for the use of social categories in structural causal models. Our approach flexibly incorporates counterfactuals and is compatible with various ontological assumptions about the nature of social categories. We demonstrate impact remediation with a real-world case study and compare our disaggregated approach to an existing state-of-the-art approach, comparing its structure and resulting policy recommendations. In contrast to most work on optimal policy learning, we explore disparity reduction itself as an objective, explicitly focusing the power of algorithms on reducing inequality.


翻译:数据科学的大量研究认为,对诸如种族或性别等社会类别的歧视不公平,这种歧视可能发生或因算法决定而扩大。与此同时,即使在算法决定作出之前,现实世界差异继续存在。在这项工作中,我们利用社会科学和人文学研究的深刻见解,进入因果建模和限制优化的领域,并制定一个新的算法框架,以解决先前存在的现实世界差异。我们称为“影响补救框架”的框架的目的是衡量现实世界差异,发现有助于改善那些在利益结果方面得不到充分服务的人的公平或机会的最佳干预政策。我们制定分门别类的办法,解决先前存在的差异,放松在结构性因果模型中使用社会类别所需的典型假设。我们的方法灵活地结合反事实,并与关于社会类别性质的各种理论假设相容。我们用现实世界案例研究来显示影响补救,比较我们分门别类的方法,将我们分门别门别类的方法与现有的状态方法进行比较,比较其结构和由此产生的政策建议。我们制定分门别门别门别类的方法,以缩小不平等,明确研究减少最佳政策差异的最佳方法。

0
下载
关闭预览

相关内容

人工智能顶会WSDM2021优秀论文奖(Best Paper Award Runner-Up)出炉
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月3日
Arxiv
0+阅读 · 2021年9月3日
Arxiv
30+阅读 · 2021年8月18日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员