This paper considers a new class of deterministic finite-time horizon, two-player, zero-sum differential games (DGs) in which the maximizing player is allowed to take continuous and impulse controls whereas the minimizing player is allowed to take impulse control only. We seek to approximate the value function, and to provide a verification theorem for this class of DGs. We first, by means of dynamic programming principle (DPP) in viscosity solution (VS) framework, characterize the value function as the unique VS to the related Hamilton-Jacobi-Bellman-Isaacs (HJBI) double-obstacle equation. Next, we prove that an approximate value function exists, that it is the unique solution to an approximate HJBI double-obstacle equation, and converges locally uniformly towards the value function of each player when the time discretization step goes to zero. Moreover, we provide a verification theorem which characterizes a Nash-equilibrium for the DG control problem considered. Finally, by applying our results, we derive a new continuous-time portfolio optimization model, and we provide related computational algorithms.
翻译:本文考虑一种新的确定性有限时间范围、 双玩家、 零和差分游戏( DGs), 允许最大玩家采取连续和脉冲控制, 而最小玩家只允许采取脉冲控制。 我们试图接近值函数, 并为这类 DGs 提供一个校验理论。 我们首先在粘度解决方案框架中采用动态编程原则( DPP ), 将值函数定性为与相关的汉密尔顿- Jacobi- Bellman- Isaaac 等式( HJBI) 不同的VS 。 下一步, 我们证明存在一个近似值函数, 这是大约 HJBI 双孔方程式的独一解决方案, 并且当时间分解到零时, 将本地统一到每个玩家的值函数 。 此外, 我们提供一种校验标, 将纳什- 等分级元素定性为所考虑的DG控制问题。 最后, 我们通过应用我们的结果, 产生新的连续组合优化模型, 我们提供相关的计算算算算法 。