A common test for the diagnosis of type 2 diabetes is the Oral Glucose Tolerance Test (OGTT). Recent developments in the study of OGTT tests have framed it as a Bayesian inverse problem. These data analysis advances promise great improvements in the descriptive power of OGTTs. OGTT tests are typically done with invasive, bothersome, and somewhat expensive venous blood tests. A natural question is whether improved data analysis techniques would allow for less invasive and cheaper glucometer measurements to be used. In this paper we explore this question. Using one dynamic model, we develop an error model for glucometer capillary blood sugar measurements and compare results of venous blood sugar tests for 65 patients, finding a match in over 90% of observed cases. Our conclusion suggests that this model (or one much like it) may permit capillary glucose to be used with reasonable accuracy in performing OGTTs.
翻译:诊断2型糖尿病的常见测试是口服甘蔗容忍测试(OGTT),OGTT测试研究的最新发展将OGTT测试描述成一种巴伊西亚反向问题。这些数据分析的进展预示着OGTTs描述力的巨大改善。OGTT的测试通常是通过侵入性、麻烦和一些昂贵的静脉血液测试进行的。一个自然的问题是,改进数据分析技术是否允许使用较少侵入性和更廉价的葡萄测量。在本文中,我们探讨这一问题。我们用一种动态模型,为65名病人开发了液压计透血糖测量出错模型,并比较了静脉血糖测试结果,在所观察到的病例中有90%以上是匹配的。我们的结论表明,这一模型(或类似于它的一个模型)可能允许以合理准确的方式使用毛糖来进行OGTTTs。</s>