Multiple intriguing problems hover in adversarial training, including robustness-accuracy trade-off, robust overfitting, and gradient masking, posing great challenges to both reliable evaluation and practical deployment. Here, we show that these problems share one common cause -- low quality samples in the dataset. We first identify an intrinsic property of the data called problematic score and then design controlled experiments to investigate its connections with these problems. Specifically, we find that when problematic data is removed, robust overfitting and gradient masking can be largely alleviated; and robustness-accuracy trade-off is more prominent for a dataset containing highly problematic data. These observations not only verify our intuition about data quality but also open new opportunities to advance adversarial training. Remarkably, simply removing problematic data from adversarial training, while making the training set smaller, yields better robustness consistently with different adversary settings, training methods, and neural architectures.


翻译:在对抗性培训中,存在许多令人感兴趣的问题,包括稳健的准确性交易、稳健的过度装配和梯度掩码,这对可靠的评估和实际部署都构成巨大挑战。在这里,我们证明这些问题有一个共同的原因,即数据集中的低质量样本。我们首先确定数据中被称为问题评分的内在属性,然后设计受控的实验来调查数据与这些问题的联系。具体地说,我们发现,当有问题的数据被删除时,稳健的过度装配和梯度掩码可以大大缓解;对于包含高度问题数据的数据集来说,稳健的准确性交易更为突出。 这些观察不仅验证了我们对数据质量的直觉,而且还为推进对抗性培训开辟了新的机会。 显而易见的是,仅仅从对抗性培训中去除了有问题的数据,同时缩小了培训组的体积,与不同的对手环境、培训方法和神经结构保持了更稳健的状态。

1
下载
关闭预览

相关内容

【斯坦福CS224W】知识图谱推理,84页ppt
专知会员服务
119+阅读 · 2021年2月19日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
44+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
60+阅读 · 2019年12月21日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
5+阅读 · 2018年1月30日
VIP会员
相关VIP内容
【斯坦福CS224W】知识图谱推理,84页ppt
专知会员服务
119+阅读 · 2021年2月19日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
44+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
60+阅读 · 2019年12月21日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员