We present a data-driven point of view for rare events, which represent conformational transitions in biochemical reactions modeled by over-damped Langevin dynamics on manifolds in high dimensions. We first reinterpret the transition state theory and the transition path theory from the optimal control viewpoint. Given point clouds sampled from a reaction dynamics, we construct a discrete Markov process based on an approximated Voronoi tesselation. We use the constructed Markov process to compute a discrete committor function whose level set automatically orders the point clouds. Then based on the committor function, an optimally controlled random walk on point clouds is constructed and utilized to efficiently sample transition paths, which become an almost sure event in $O(1)$ time instead of a rare event in the original reaction dynamics. To compute the mean transition path efficiently, a local averaging algorithm based on the optimally controlled random walk is developed, which adapts the finite temperature string method to the controlled Monte Carlo samples. Numerical examples on sphere/torus including a conformational transition for the alanine dipeptide in vacuum are conducted to illustrate the data-driven solver for the transition path theory on point clouds. The mean transition path obtained via the controlled Monte Carlo simulations highly coincides with the computed dominant transition path in the transition path theory.
翻译:我们为稀有事件展示了一个数据驱动的观点, 这些罕见事件代表了由高维多维的多印的Langevin动态模型模型的生化反应的一致转变。 我们首先从最佳控制角度重新解释转型状态理论和过渡路径理论。 鉴于从反应动态中取样的点云, 我们根据一个大致的Voronoi 随机浮游, 构建了一个离散的Markov 进程。 我们使用构建的 Markov 进程来计算一个离散的 承诺函数, 该函数的级别将自动命令点云。 然后, 在承诺函数的基础上, 在点云上构建一个最佳控制的随机随机行走, 并用于高效的样本过渡路径。 在最初反应动态中, 这几乎在$O(1) 美元的时间里成为一个几乎肯定的事件。 要高效地理解平均的过渡路径, 正在开发一个基于最佳控制的随机行走法的本地平均算法, 使有限的温度弦方法适应受控的蒙特卡洛 样本。 在球体/ 点/ 构造上的例子, 包括真空中一条直线的顺流流流流流的过渡过程, 正在通过中获取的模型模拟过渡路径, 以显示高控的理论的过渡路径, 以高控的理论的过渡轨道的过渡路径, 以 以导的模型的过渡轨道的路径将显示的路径以显示。