We present a data-driven point of view for rare events, which represent conformational transitions in biochemical reactions modeled by over-damped Langevin dynamics on manifolds in high dimensions. We first reinterpret the transition state theory and the transition path theory from the optimal control viewpoint. Given point clouds sampled from a reaction dynamics, we construct a discrete Markov process based on an approximated Voronoi tesselation. We use the constructed Markov process to compute a discrete committor function whose level set automatically orders the point clouds. Then based on the committor function, an optimally controlled random walk on point clouds is constructed and utilized to efficiently sample transition paths, which become an almost sure event in $O(1)$ time instead of a rare event in the original reaction dynamics. To compute the mean transition path efficiently, a local averaging algorithm based on the optimally controlled random walk is developed, which adapts the finite temperature string method to the controlled Monte Carlo samples. Numerical examples on sphere/torus including a conformational transition for the alanine dipeptide in vacuum are conducted to illustrate the data-driven solver for the transition path theory on point clouds. The mean transition path obtained via the controlled Monte Carlo simulations highly coincides with the computed dominant transition path in the transition path theory.


翻译:我们为稀有事件展示了一个数据驱动的观点, 这些罕见事件代表了由高维多维的多印的Langevin动态模型模型的生化反应的一致转变。 我们首先从最佳控制角度重新解释转型状态理论和过渡路径理论。 鉴于从反应动态中取样的点云, 我们根据一个大致的Voronoi 随机浮游, 构建了一个离散的Markov 进程。 我们使用构建的 Markov 进程来计算一个离散的 承诺函数, 该函数的级别将自动命令点云。 然后, 在承诺函数的基础上, 在点云上构建一个最佳控制的随机随机行走, 并用于高效的样本过渡路径。 在最初反应动态中, 这几乎在$O(1) 美元的时间里成为一个几乎肯定的事件。 要高效地理解平均的过渡路径, 正在开发一个基于最佳控制的随机行走法的本地平均算法, 使有限的温度弦方法适应受控的蒙特卡洛 样本。 在球体/ 点/ 构造上的例子, 包括真空中一条直线的顺流流流流流的过渡过程, 正在通过中获取的模型模拟过渡路径, 以显示高控的理论的过渡路径, 以高控的理论的过渡轨道的过渡路径, 以 以导的模型的过渡轨道的路径将显示的路径以显示。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【泡泡一分钟】无地图驾驶的深层语义车道分割
泡泡机器人SLAM
3+阅读 · 2019年3月11日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月30日
Arxiv
0+阅读 · 2021年9月29日
Arxiv
0+阅读 · 2021年9月29日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【泡泡一分钟】无地图驾驶的深层语义车道分割
泡泡机器人SLAM
3+阅读 · 2019年3月11日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员