With increasing data availability, causal treatment effects can be evaluated across different datasets, both randomized controlled trials (RCTs) and observational studies. RCTs isolate the effect of the treatment from that of unwanted (confounding) co-occurring effects. But they may struggle with inclusion biases, and thus lack external validity. On the other hand, large observational samples are often more representative of the target population but can conflate confounding effects with the treatment of interest. In this paper, we review the growing literature on methods for causal inference on combined RCTs and observational studies, striving for the best of both worlds. We first discuss identification and estimation methods that improve generalizability of RCTs using the representativeness of observational data. Classical estimators include weighting, difference between conditional outcome models, and doubly robust estimators. We then discuss methods that combine RCTs and observational data to improve (conditional) average treatment effect estimation, handling possible unmeasured confounding in the observational data. We also connect and contrast works developed in both the potential outcomes framework and the structural causal model framework. Finally, we compare the main methods using a simulation study and real world data to analyze the effect of tranexamic acid on the mortality rate in major trauma patients. Code to implement many of the methods is provided.


翻译:随着数据提供量的增加,可以对不同数据集的因果关系处理效果进行评估,包括随机控制试验和观察研究,以及观察研究。RCT将治疗的效果与不想要的(固定)共同作用的效果分开,但是它们可能会与包容偏差作斗争,因而缺乏外部有效性。另一方面,大量的观测样本往往更能代表目标人群,但可以将混杂效应与兴趣的处理结合起来。在本文中,我们审查关于综合RCT和观察研究的因果关系推断方法的文献不断增长,力求实现两个世界的最佳。我们首先讨论利用观测数据的代表性来提高RCT的通用性的方法。典型的估算包括加权、有条件结果模型之间的差异和双重强度估计。我们然后讨论将RCT和观测数据结合起来的方法,以改进(有条件的)平均治疗效果估计,处理观测数据中可能无法计量的混杂现象。我们还首先讨论确定和比较在潜在结果框架和结构性创伤后诊断分析中开发的RCT的可比较方法。最后,我们用真实的模型和结构性创伤后期分析方法将世界病员死亡率模型与许多主要模型分析方法进行比较。

0
下载
关闭预览

相关内容

因果推断,Causal Inference:The Mixtape
专知会员服务
103+阅读 · 2021年8月27日
【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
63+阅读 · 2021年8月7日
专知会员服务
17+阅读 · 2020年9月6日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Structure Learning for Directed Trees
Arxiv
0+阅读 · 2021年9月28日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
108+阅读 · 2020年2月5日
VIP会员
相关VIP内容
因果推断,Causal Inference:The Mixtape
专知会员服务
103+阅读 · 2021年8月27日
【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
63+阅读 · 2021年8月7日
专知会员服务
17+阅读 · 2020年9月6日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员