Advances in AI based computer vision has led to a significant growth in synthetic image generation and artificial image tampering with serious implications for unethical exploitations that undermine person identification and could make render AI predictions less explainable.Morphing, Deepfake and other artificial generation of face photographs undermine the reliability of face biometrics authentication using different electronic ID documents.Morphed face photographs on e-passports can fool automated border control systems and human guards.This paper extends our previous work on using the persistent homology (PH) of texture landmarks to detect morphing attacks.We demonstrate that artificial image tampering distorts the spatial distribution of texture landmarks (i.e. their PH) as well as that of a set of image quality characteristics.We shall demonstrate that the tamper caused distortion of these two slim feature vectors provide significant potentials for building explainable (Handcrafted) tamper detectors with low error rates and suitable for implementation on constrained devices.
翻译:以AI为基础的计算机愿景的进展导致合成图像生成和人工图像篡改的大幅增加,严重影响了破坏个人身份的不道德利用,并可能使AI预测变得不易解释。 摩菲、Deepfake和其他人工制作的脸相照片破坏了使用不同电子身份文件进行脸部生物鉴别认证的可靠性。 电子护照上的Morphed脸相片可能愚弄自动边境管制系统和人类卫士。 本文扩展了我们以前关于使用耐久的纹理标志同质谱(PH)探测变形攻击的工作。 我们证明,人为图像篡改扭曲了纹理标志(即其PH)的空间分布以及一套图像质量特征。 我们应表明,这种篡改造成对这两个微小特征矢量器的扭曲,为建立可解释的(手工制作的)移动探测器提供了巨大的潜力,可以低出错率地对探测器进行篡改,并适合对受限制的装置实施。