Transfer learning has remarkably improved computer vision. These advances also promise improvements in neuroimaging, where training set sizes are often small. However, various difficulties arise in directly applying models pretrained on natural images to radiologic images, such as MRIs. In particular, a mismatch in the input space (2D images vs. 3D MRIs) restricts the direct transfer of models, often forcing us to consider only a few MRI slices as input. To this end, we leverage the 2D-Slice-CNN architecture of Gupta et al. (2021), which embeds all the MRI slices with 2D encoders (neural networks that take 2D image input) and combines them via permutation-invariant layers. With the insight that the pretrained model can serve as the 2D encoder, we initialize the 2D encoder with ImageNet pretrained weights that outperform those initialized and trained from scratch on two neuroimaging tasks -- brain age prediction on the UK Biobank dataset and Alzheimer's disease detection on the ADNI dataset. Further, we improve the modeling capabilities of 2D-Slice models by incorporating spatial information through position embeddings, which can improve the performance in some cases.
翻译:计算机传输学习显著改善了计算机的视野。 这些进步还有望改善神经成像的神经成像, 培训设置的大小往往很小。 但是,直接应用在自然图像上预先培训的模型直接应用自然图像模型( 如光学成像仪等), 出现各种困难。 特别是输入空间(2D图像对 3D MMIs) 的不匹配限制了模型的直接传输, 常常迫使我们只考虑几张MRI切片作为输入。 为此, 我们利用Gupta等人( 2021年) 的 2D- Sice-CNN 结构, 该结构将所有MRI切片嵌入2D 编码器( 包含 2D 图像输入的神经成像网络), 并通过变异- 变异层将这些模型合并起来。 有了预培训模型可以作为 2D 的编码器, 我们开始将 2D 编码器与图像网 的预设的重量比那些刚开始和训练的重量高。 两个神经成型任务 -- 英国生物银行的大脑年龄预测 和ADIC 疾病检测 数据集的大脑年龄, 进一步将 2DL 模型纳入空间模型。</s>