Pretrained backbones with fine-tuning have been widely adopted in 2D vision and natural language processing tasks and demonstrated significant advantages to task-specific networks. In this paper, we present a pretrained 3D backbone, named Swin3D, which first outperforms all state-of-the-art methods in downstream 3D indoor scene understanding tasks. Our backbone network is based on a 3D Swin transformer and carefully designed to efficiently conduct self-attention on sparse voxels with linear memory complexity and capture the irregularity of point signals via generalized contextual relative positional embedding. Based on this backbone design, we pretrained a large Swin3D model on a synthetic Structured3D dataset that is 10 times larger than the ScanNet dataset and fine-tuned the pretrained model in various downstream real-world indoor scene understanding tasks. The results demonstrate that our model pretrained on the synthetic dataset not only exhibits good generality in both downstream segmentation and detection on real 3D point datasets, but also surpasses the state-of-the-art methods on downstream tasks after fine-tuning with +2.3 mIoU and +2.2 mIoU on S3DIS Area5 and 6-fold semantic segmentation, +2.1 mIoU on ScanNet segmentation (val), +1.9 mAP@0.5 on ScanNet detection, +8.1 mAP@0.5 on S3DIS detection. Our method demonstrates the great potential of pretrained 3D backbones with fine-tuning for 3D understanding tasks. The code and models are available at https://github.com/microsoft/Swin3D .


翻译:暂无翻译

0
下载
关闭预览

相关内容

百篇论文纵览大型语言模型最新研究进展
专知会员服务
70+阅读 · 2023年3月31日
专知会员服务
61+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月6日
VIP会员
相关VIP内容
百篇论文纵览大型语言模型最新研究进展
专知会员服务
70+阅读 · 2023年3月31日
专知会员服务
61+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员