This paper introduces a joint learning architecture (JLA) for multiple object tracking (MOT) and trajectory forecasting in which the goal is to predict objects' current and future trajectories simultaneously. Motion prediction is widely used in several state of the art MOT methods to refine predictions in the form of bounding boxes. Typically, a Kalman Filter provides short-term estimations to help trackers correctly predict objects' locations in the current frame. However, the Kalman Filter-based approaches cannot predict non-linear trajectories. We propose to jointly train a tracking and trajectory forecasting model and use the predicted trajectory forecasts for short-term motion estimates in lieu of linear motion prediction methods such as the Kalman filter. We evaluate our JLA on the MOTChallenge benchmark. Evaluations result show that JLA performs better for short-term motion prediction and reduces ID switches by 33%, 31%, and 47% in the MOT16, MOT17, and MOT20 datasets, respectively, in comparison to FairMOT.


翻译:本文介绍了一个用于多物体跟踪(MOT)和轨迹预测的联合学习架构(JLA),其目标是同时预测物体目前和未来的轨迹。运动预测被广泛用于数种最先进的MOT方法,以捆绑框的形式改进预测。通常,Kalman过滤器提供短期估计,帮助跟踪器正确预测当前框架中的物体位置。然而,基于Kalman过滤器的方法无法预测非线性轨迹。我们提议联合培训一个跟踪和轨迹预测模型,并使用预测的短期运动预测轨迹预测,以取代Kalman过滤器等线性运动预测方法。我们评估了我们在MOTChallenge基准上的JLA。评价结果显示,与FairMOT相比,JLA在短期预测方面表现更好,并将MOT16、MOT17和MOT20数据集中的ID开关分别减少33%、31%和47%。

0
下载
关闭预览

相关内容

标跟踪是指:给出目标在跟踪视频第一帧中的初始状态(如位置,尺寸),自动估计目标物体在后续帧中的状态。 目标跟踪分为单目标跟踪和多目标跟踪。 人眼可以比较轻松的在一段时间内跟住某个特定目标。但是对机器而言,这一任务并不简单,尤其是跟踪过程中会出现目标发生剧烈形变、被其他目标遮挡或出现相似物体干扰等等各种复杂的情况。过去几十年以来,目标跟踪的研究取得了长足的发展,尤其是各种机器学习算法被引入以来,目标跟踪算法呈现百花齐放的态势。2013年以来,深度学习方法开始在目标跟踪领域展露头脚,并逐渐在性能上超越传统方法,取得巨大的突破。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
230+阅读 · 2020年12月15日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
3D目标检测进展综述
专知会员服务
191+阅读 · 2020年4月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
ECCV 2020 目标跟踪论文大盘点
极市平台
7+阅读 · 2020年10月4日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
NIPS 2018 | 轨迹卷积网络 TrajectoryNet
极市平台
8+阅读 · 2019年2月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
车辆目标检测
数据挖掘入门与实战
30+阅读 · 2018年3月30日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
57+阅读 · 2019年7月31日
Arxiv
3+阅读 · 2018年3月22日
Arxiv
8+阅读 · 2018年3月20日
VIP会员
相关资讯
ECCV 2020 目标跟踪论文大盘点
极市平台
7+阅读 · 2020年10月4日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
NIPS 2018 | 轨迹卷积网络 TrajectoryNet
极市平台
8+阅读 · 2019年2月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
车辆目标检测
数据挖掘入门与实战
30+阅读 · 2018年3月30日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Top
微信扫码咨询专知VIP会员