This paper introduces a joint learning architecture (JLA) for multiple object tracking (MOT) and trajectory forecasting in which the goal is to predict objects' current and future trajectories simultaneously. Motion prediction is widely used in several state of the art MOT methods to refine predictions in the form of bounding boxes. Typically, a Kalman Filter provides short-term estimations to help trackers correctly predict objects' locations in the current frame. However, the Kalman Filter-based approaches cannot predict non-linear trajectories. We propose to jointly train a tracking and trajectory forecasting model and use the predicted trajectory forecasts for short-term motion estimates in lieu of linear motion prediction methods such as the Kalman filter. We evaluate our JLA on the MOTChallenge benchmark. Evaluations result show that JLA performs better for short-term motion prediction and reduces ID switches by 33%, 31%, and 47% in the MOT16, MOT17, and MOT20 datasets, respectively, in comparison to FairMOT.
翻译:本文介绍了一个用于多物体跟踪(MOT)和轨迹预测的联合学习架构(JLA),其目标是同时预测物体目前和未来的轨迹。运动预测被广泛用于数种最先进的MOT方法,以捆绑框的形式改进预测。通常,Kalman过滤器提供短期估计,帮助跟踪器正确预测当前框架中的物体位置。然而,基于Kalman过滤器的方法无法预测非线性轨迹。我们提议联合培训一个跟踪和轨迹预测模型,并使用预测的短期运动预测轨迹预测,以取代Kalman过滤器等线性运动预测方法。我们评估了我们在MOTChallenge基准上的JLA。评价结果显示,与FairMOT相比,JLA在短期预测方面表现更好,并将MOT16、MOT17和MOT20数据集中的ID开关分别减少33%、31%和47%。