Molecule optimization is a critical task in drug discovery to optimize desired properties of a given molecule through chemical modification. Despite Large Language Models (LLMs) holding the potential to efficiently simulate this task by using natural language to direct the optimization, straightforwardly utilizing shows limited performance. In this work, we facilitate utilizing LLMs in an iterative paradigm by proposing a simple yet highly effective domain feedback provider, namely $\text{Re}^3$DF. In detail, $\text{Re}^3$DF harnesses an external toolkit, RDKit, to handle the molecule hallucination, if the modified molecule is chemically invalid. Otherwise, its desired properties are computed and compared to the original one, establishing reliable domain feedback with correct direction and distance towards the objective, followed by a retrieved example, to explicitly guide the LLM to refine the modified molecule. We conduct experiments across both single- and multi-property objectives with 2 thresholds, where $\text{Re}^3$DF shows significant improvements. Particularly, for 20 single-property objectives, $\text{Re}^3$DF enhances Hit ratio by 16.95% and 20.76% under loose and strict thresholds, respectively. For 32 multi-property objectives, $\text{Re}^3$DF enhances Hit ratio by 6.04% and 5.25%.


翻译:暂无翻译

0
下载
关闭预览

相关内容

IEEE国际需求工程会议是研究人员、实践者、教育工作者和学生展示和讨论需求工程学科最新创新、经验和关注点的首要国际论坛。这次会议将为学术界、政府和工业界提供一个广泛的项目,其中包括几位杰出的主旨演讲人和三天的会议,会议内容包括论文、专题讨论、海报和演示。官网链接:https://re20.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员