We propose a new approach for solving systems of conservation laws that admit a variational formulation of the time-discretized form, and encompasses the p-system or the system of elastodynamics. The approach consists of using constrained gradient descent for solving an implicit scheme with variational formulation, while discontinuous Galerkin finite element methods is used for the spatial discretization. The resulting optimization scheme performs well, it has an advantage on how it handles oscillations near shocks, and a disadvantage in computational cost, which can be partly alleviated by using techniques on step selection from optimization methods.
翻译:我们提出了解决保护法体系的新方法,这些体系允许对时间分解形式作出变式的配方,并包含生态系统或 Elastives 系统。 这种方法包括使用受限梯度下降来用变式配方解决隐含计划,而空间分化则使用不连续的Galerkin定点元素方法。 由此形成的优化计划效果良好,它有利于处理震荡附近振荡以及计算成本方面的劣势,通过使用从优化方法中逐步选择技术可以部分减轻这种劣势。