Identifying dynamical systems from experimental data is a notably difficult task. Prior knowledge generally helps, but the extent of this knowledge varies with the application, and customized models are often needed. Neural ordinary differential equations can be written as a flexible framework for system identification and can incorporate a broad spectrum of physical insight, giving physical interpretability to the resulting latent space. In the case of partial observations, however, the data points cannot directly be mapped to the latent state of the ODE. Hence, we propose to design recognition models, in particular inspired by nonlinear observer theory, to link the partial observations to the latent state. We demonstrate the performance of the proposed approach on numerical simulations and on an experimental dataset from a robotic exoskeleton.
翻译:从实验数据中确定动态系统是一项特别困难的任务。 先前的知识通常有帮助,但这种知识的范围随应用而不同,往往需要定制模型。 神经普通差异方程式可以写成一个灵活的系统识别框架,可以包含广泛的物理洞察力,对由此产生的潜在空间进行物理解释。 但是,在部分观测的情况下,数据点不能直接映射到ODE的潜伏状态。 因此,我们提议设计识别模型,特别是受非线性观察理论的启发,将部分观测与潜伏状态联系起来。 我们展示了拟议的数字模拟方法和机器人外骨骼的实验数据集的性能。