项目名称: 基于模式识别的道路网数据LOD表达
项目编号: No.40871185
项目类型: 面上项目
立项/批准年度: 2009
项目学科: 轻工业、手工业
项目作者: 杨必胜
作者单位: 武汉大学
项目金额: 37万元
中文摘要: 道路网的Level_of_Detail (LOD)表达对于空间数据的自适应可视化、网络渐进传输、多尺度路网数据库的建立以及空间信息服务质量的提高等方面具有十分重要的作用和意义。目前,道路网LOD 表达方面的研究在道路网结构模式的识别与LOD 模型间的映射关系方面存在欠缺。本项目以道路网数据为研究对象,研究内容包括:基于语义特征和几何数据的道路网局部结构模式的自动识别算法;道路网结构模式特征保留和连通不变的道路网LOD 表达算法;道路网LOD 模型间的映射关系模型;拓扑一致性的压缩算法对道路网LOD 模型进行压缩。项目研究进展顺利,目前已发表论文13篇(其中SCI/SSCI 文章2篇,EI论文6篇,ISTP论文1篇);培养了毕业硕士研究生2名、在读博士研究生2名;资助成员和学生参加了3个国际会议。申请专利1项。通过该项目的研究能够为智能导航与位置服务中的空间数据的自适应可视化、网络渐进传输、多尺度空间数据库的建立奠定技术基础。
中文关键词: 模式识别;LOD 表达;连通不变性;道路网数据;压缩
英文摘要: Road network Level of detail (LoD) representation plays an important role in improving the qualities of adaptive representation, progresive transmission, Multi-scale Database and spatial information service. At present, there is relatively less research on the road network structural pattern recgnition and LoD model mapping in road network LoD representation. This project researches on road network vector datasets, and the contents include (1) road network local structural pattern automatic recognizing algorithm based on semantic and geometic inrofmation, (2) road network LoD representing algorithm keeping pattern structures and connective relation, (3) mapping between diffent road network LoD models, and (4) topology-keeping compression algorithm for road network LoD model. This project has been finished successfully. Up to date, it has supported some works as follows: 13 papers (including 2 SCI/SSCI papers, 6 EI papers, and 1 ISTP paper),2 master dissertations and 5 PhD students, 3 attendings of international conferences. At the meanwhile, this project has applied 1 paten. The models and algorithms proposed in this project is able to establish technical foundation to achieve a promising solution for spatial data adaptive visualization in smart navigation and location base services, progressive transmission through Internet, and the establishment of multi-scale spatial database.
英文关键词: pattern recognition; LoD representation; connective invariance; road network data; compress