This paper considers the performance of long Reed-Muller (RM) codes transmitted over binary memoryless symmetric (BMS) channels under bitwise maximum-a-posteriori decoding. Its main result is that the family of binary RM codes achieves capacity on any BMS channel with respect to bit-error rate. This resolves a long-standing open problem that connects information theory and error-correcting codes. In contrast with the earlier result for the binary erasure channel, the new proof does not rely on hypercontractivity. Instead, it combines a nesting property of RM codes with new information inequalities relating the generalized extrinsic information transfer function and the extrinsic minimum mean-squared error.
翻译:本文审视了长期的 Reed- Muller (RM) 代码在二进制的无内存性对称( BMS) 频道上通过比特智最大隐性解码传输的长线对称( BMS) 的性能, 其主要结果是二进制 RM 代码组在任何 BMS 频道上都具备了比特错率方面的能力 。 这解决了一个长期存在的、 将信息理论与错误校正代码连接起来的公开问题 。 与二进制删除频道的早期结果相反, 新证据并不依赖于超高合同性 。 相反, 它把 RM 代码的嵌套属性与与与与通用外端信息传输功能和外端最小平均差相关的新信息不平等结合起来 。