This paper considers intelligent reflecting surface (IRS)-aided simultaneous wireless information and power transfer (SWIPT) in a multi-user multiple-input single-output (MISO) interference channel (IFC), where multiple transmitters (Txs) serve their corresponding receivers (Rxs) in a shared spectrum with the aid of IRSs. Our goal is to maximize the sum rate of the Rxs by jointly optimizing the transmit covariance matrices at the Txs, the phase shifts at the IRSs, and the resource allocation subject to the individual energy harvesting (EH) constraints at the Rxs. Towards this goal and based on the well-known power splitting (PS) and time switching (TS) receiver structures, we consider three practical transmission schemes, namely the IRS-aided hybrid TS-PS scheme, the IRS-aided time-division multiple access (TDMA) scheme, and the IRS-aided TDMA-D scheme. The latter two schemes differ in whether the Txs employ deterministic energy signals known to all the Rxs. Despite the non-convexity of the three optimization problems corresponding to the three transmission schemes, we develop computationally efficient algorithms to address them suboptimally, respectively, by capitalizing on the techniques of alternating optimization (AO) and successive convex approximation (SCA). Moreover, we conceive feasibility checking methods for these problems, based on which the initial points for the proposed algorithms are constructed. Simulation results demonstrate that our proposed IRS-aided schemes significantly outperform their counterparts without IRSs in terms of sum rate and maximum EH requirements that can be satisfied under various setups. In addition, the IRS-aided hybrid TS-PS scheme generally achieves the best sum rate performance among the three proposed IRS-aided schemes, and if not, increasing the number of IRS elements can always accomplish it.


翻译:本文认为,在多用户多投入单发干涉频道(IFC)中,多发报机(Txs)在IRS的帮助下,在共享频谱中为相应的接收机(Rxs)提供服务。我们的目标是通过联合优化Tx的传输共变矩阵、IRS的阶段性转变以及受Rx单个能源收获限制的资源分配(SWIPT),使Rx的同步无线信息和电力传输(SWIPT)在一个多用户多投入单发单发干涉频道(IFC)中智能反映表面(IFC),多发报机(Tx)在一个共享频谱中为相应的接收机(Rx)提供服务。我们的目标是通过联合优化TS-PS的组合组合组合组合、IRS的组合组合组合组合(TDMA)的组合组合组合组合组合、IRS的拟议IMA-D计划。 后两种组合在Tx是否使用已知的确定性能源信号(EH)方面总是有所不同。 实现这一目标,并基于众所周知的电流分流(PS)和时间轴接收器的系统)结构,我们不断更新的系统(SLAx)的组合的快速化三度(SL)系统(Silal)的组合的组合的组合的组合,这些系统(Sild)的组合的组合的组合的系统能(Sild)将满足了我们更替算的周期性)的周期性)的系统(我们更变的组合的组合的组合的组合的周期性)的系统)的系统(我们的组合的组合的组合)的组合的周期性能要求。</s>

0
下载
关闭预览

相关内容

Surface 是微软公司( Microsoft)旗下一系列使用 Windows 10(早期为 Windows 8.X)操作系统的电脑产品,目前有 Surface、Surface Pro 和 Surface Book 三个系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由时任微软 CEO 史蒂夫·鲍尔默发布于在洛杉矶举行的记者会,2012 年 10 月 26 日上市销售。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员