The flexible duplex (FD) technique, including dynamic time-division duplex (D-TDD) and dynamic frequency-division duplex (D-FDD), is regarded as a promising solution to achieving a more flexible uplink/downlink transmission in 5G-Advanced or 6G mobile communication systems. However, it may introduce serious cross-link interference (CLI). For better mitigating the impact of CLI, we first present a more realistic base station (BS)-to-BS channel model incorporating the radio frequency (RF) chain characteristics, which exhibit a hardware-dependent nonlinear property, and hence the accuracy of conventional channel modelling is inadequate for CLI cancellation. Then, we propose a channel parameter estimation based polynomial CLI canceller and two machine learning (ML) based CLI cancellers that use the lightweight feedforward neural network (FNN). Our simulation results and analysis show that the ML based CLI cancellers achieve notable performance improvement and dramatic reduction of computational complexity, in comparison with the polynomial CLI canceller.
翻译:暂无翻译