We give new upper and lower bounds on the minimax sample complexity of differentially private mean estimation of distributions with bounded $k$-th moments. Roughly speaking, in the univariate case, we show that $n = \Theta\left(\frac{1}{\alpha^2} + \frac{1}{\alpha^{\frac{k}{k-1}}\varepsilon}\right)$ samples are necessary and sufficient to estimate the mean to $\alpha$-accuracy under $\varepsilon$-differential privacy, or any of its common relaxations. This result demonstrates a qualitatively different behavior compared to estimation absent privacy constraints, for which the sample complexity is identical for all $k \geq 2$. We also give algorithms for the multivariate setting whose sample complexity is a factor of $O(d)$ larger than the univariate case.
翻译:我们给出了微缩样本复杂度的新上限和下限。 我们给出了不同私人平均估计值的最小样本复杂度, 其分布范围为$- varepsilon- differents。 粗略地说, 在单面框中, 我们显示, $ =\ theta\left (\ frac{ 1\\\\ phalpha{ 1\\\ phara2} +\ frac{ 1\ alpha{ k ⁇ k\\\ \ \ \ \ \ \ ⁇ varepsilon {right) 样本是必需的, 足以估算在 $\ varepsilon- droital- droits 或任何常见的松动。 这个结果显示, 与没有隐私限制的估计相比, 与没有隐私限制, 样本复杂度与所有 $k\ geq 2美元相同。 我们还给出了多个变量设置的算法, 其样本复杂度系数大于 $( d) 。