In this paper, we investigate the differentially private estimation of data depth functions and their associated medians. We introduce several methods for privatizing depth values at a fixed point, and show that for some depth functions, when the depth is computed at an out of sample point, privacy can be gained for free when $n\rightarrow \infty$. We also present a method for privately estimating the vector of sample point depth values. Additionally, we introduce estimation methods for depth-based medians for both depth functions with low global sensitivity and depth functions with only highly probable, low local sensitivity. We provide a general result (Lemma 1) which can be used to prove consistency of an estimator produced by the exponential mechanism, provided the limiting cost function is sufficiently smooth at a unique minimizer. We also introduce a general algorithm to privately estimate a minimizer of a cost function which has, with high probability, low local sensitivity. This algorithm combines the propose-test-release algorithm with the exponential mechanism. An application of this algorithm to generate consistent estimates of the projection depth-based median is presented. Thus, for these private depth-based medians, we show that it is possible for privacy to be obtained for free when $n\rightarrow \infty$.


翻译:在本文中,我们调查了对数据深度功能及其相关中位数的不同私人估计。 我们引入了在固定点将深度值私有化的几种方法, 并表明, 对于某些深度功能, 当深度在抽样点之外计算时, 就可以免费获得隐私。 我们还提出了一种方法, 用于私下估计样本点深度值的矢量。 此外, 我们引入了一种基于深度的中位数的估算方法, 用于全球敏感度低和深度功能均具有高度可能、 本地敏感度低的深度函数。 我们提供了一种一般结果( Lemma 1 ), 可用于证明指数机制产生的估计值的一致性, 只要限制成本功能在独特的最小值上足够平滑。 我们还引入了一种普通算法, 私下估计成本功能的最小值, 其可能性很高, 本地敏感度低。 这种算法将提议的测试- 释放算法与指数机制结合起来。 应用这种算法来得出预测深度中位数的一致的估计值。 因此, 对于这些基于私人深度机制的中位值, 我们展示了一种可以自由获取的隐私。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
专知会员服务
51+阅读 · 2020年12月14日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
专知会员服务
40+阅读 · 2020年12月1日
专知会员服务
162+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年6月2日
Arxiv
0+阅读 · 2021年6月1日
Arxiv
0+阅读 · 2021年6月1日
Arxiv
0+阅读 · 2021年5月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员