Probability distributions supported on the simplex enjoy a wide range of applications across statistics and machine learning. Recently, a novel family of such distributions has been discovered: the continuous categorical. This family enjoys remarkable mathematical simplicity; its density function resembles that of the Dirichlet distribution, but with a normalizing constant that can be written in closed form using elementary functions only. In spite of this mathematical simplicity, our understanding of the normalizing constant remains far from complete. In this work, we characterize the numerical behavior of the normalizing constant and we present theoretical and methodological advances that can, in turn, help to enable broader applications of the continuous categorical distribution. Our code is available at https://github.com/cunningham-lab/cb_and_cc/.
翻译:在简单字节上支持的概率分布在统计和机器学习中有着广泛的应用。 最近,发现了一个这种分布的新型家庭:连续的绝对性。 这个家庭具有非凡的数学简单性; 其密度函数类似于 Dirichlet 分布, 但它的密度函数类似于 Dirichlet 分布, 但只有使用基本函数才能以封闭形式写成的正常化常数常数。 尽管这种数学简单化, 我们对常数正常化常数的理解仍然远远没有完成。 在这项工作中,我们描述了正常化常数的数值行为,我们提出了理论和方法上的进步,这反过来又有助于使连续的绝对分布得到更广泛的应用。 我们的代码可以在 https://github.com/cunningham-lab/cb_and_cc/上查阅。