The hybrid-model (Avent et al 2017) in Differential Privacy is a an augmentation of the local-model where in addition to N local-agents we are assisted by one special agent who is in fact a curator holding the sensitive details of n additional individuals. Here we study the problem of machine learning in the hybrid-model where the n individuals in the curators dataset are drawn from a different distribution than the one of the general population (the local-agents). We give a general scheme -- Subsample-Test-Reweigh -- for this transfer learning problem, which reduces any curator-model DP-learner to a hybrid-model learner in this setting using iterative subsampling and reweighing of the n examples held by the curator based on a smooth variation of the Multiplicative-Weights algorithm (introduced by Bun et al, 2020). Our scheme has a sample complexity which relies on the chi-squared divergence between the two distributions. We give worst-case analysis bounds on the sample complexity required for our private reduction. Aiming to reduce said sample complexity, we give two specific instances our sample complexity can be drastically reduced (one instance is analyzed mathematically, while the other - empirically) and pose several directions for follow-up work.
翻译:不同隐私的混合模型(Avent et al 2017)是本地模型的一种增强,其中除了当地试剂之外,还有一位特别代理人协助我们工作,他实际上是一名保管额外个人的敏感细节的馆长。这里我们研究混合模型中的机器学习问题,在混合模型中,保管人数据集中的个人来自与一般人群(当地试剂)不同的分布。我们给出了一个通用的转移学习问题 -- -- 子抽样测试 -- -- 的总方案,这个方案使任何馆长-模范DP-learner在这个环境中的混合模范学习者都能够使用迭接的子取样和重新对比。我们的方法有一个样本复杂性,它依赖于两种分布之间的千差万别差异。我们给出了最坏的个案分析,可以限制我们个人裁员所需的样本复杂性。为了降低上述样本复杂性,我们提供了两种具体样本的复杂性,我们提供了两种具体的例子,同时对其它的模型进行了分析。