Fake audio detection is a growing concern and some relevant datasets have been designed for research. But there is no standard public Chinese dataset under additive noise conditions. In this paper, we aim to fill in the gap and design a Chinese fake audio detection dataset (FAD) for studying more generalized detection methods. Twelve mainstream speech generation techniques are used to generate fake audios. To simulate the real-life scenarios, three noise datasets are selected for noisy adding at five different signal noise ratios. FAD dataset can be used not only for fake audio detection, but also for detecting the algorithms of fake utterances for audio forensics. Baseline results are presented with analysis. The results that show fake audio detection methods with generalization remain challenging. The FAD dataset is publicly available.


翻译:假音频探测是一个日益令人关切的问题,一些相关的数据集已经设计用于研究。但在添加噪音条件下,没有标准的中国公共数据集。在本文中,我们的目标是填补空白,设计中国假音频探测数据集(FAD),以研究更普遍的探测方法。使用12种主流语音生成技术生成假音频。模拟真实生活情景时,选择了3个噪音数据集,在5种不同的信号噪音比率上添加噪音。FAD数据集不仅可用于假音频探测,还可以用于探测音频法鉴定假话的算法。基线结果与分析一起提出。显示假音频探测方法并作一般性分析的结果仍然具有挑战性。FAD数据集是公开提供的。</s>

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2020年10月19日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员