Aquatic locomotion is a classic fluid-structure interaction (FSI) problem of interest to biologists and engineers. Solving the fully coupled FSI equations for incompressible Navier-Stokes and finite elasticity is computationally expensive. Optimizing robotic swimmer design within such a system generally involves cumbersome, gradient-free procedures on top of the already costly simulation. To address this challenge we present a novel, fully differentiable hybrid approach to FSI that combines a 2D direct numerical simulation for the deformable solid structure of the swimmer and a physics-constrained neural network surrogate to capture hydrodynamic effects of the fluid. For the deformable solid simulation of the swimmer's body, we use state-of-the-art techniques from the field of computer graphics to speed up the finite-element method (FEM). For the fluid simulation, we use a U-Net architecture trained with a physics-based loss function to predict the flow field at each time step. The pressure and velocity field outputs from the neural network are sampled around the boundary of our swimmer using an immersed boundary method (IBM) to compute its swimming motion accurately and efficiently. We demonstrate the computational efficiency and differentiability of our hybrid simulator on a 2D carangiform swimmer. Due to differentiability, the simulator can be used for computational design of controls for soft bodies immersed in fluids via direct gradient-based optimization.
翻译:水下运动器是生物学家和工程师感兴趣的典型流体结构互动( FSI) 问题。 解决不压缩的纳维- Stokes 和有限弹性的完全结合的 FSI 方程式计算成本高昂。 优化这个系统内的机器人游泳器设计通常涉及繁琐的、无梯度的程序, 再加上成本高昂的模拟。 为了应对这一挑战, 我们向FSI展示了一种新型的、完全不同的混合方法, 该方法结合了2D直接的数字模拟, 以模拟游泳器变软的固度结构, 以及一个物理控制神经网络的代谢器, 以捕捉取流体流体的流体动力效应。 为了对游泳机体进行不完善的固态模拟, 我们从计算机图形领域采用最先进的技术, 加速定调精度方法( FEM ) 。 对于液体模拟, 我们使用一个经过训练的基于物理损失功能的U- 网络架构, 来预测流体的流体运动场。 神经网络的压力和速度场的输出, 是在我们游泳机的直流体结构的边界边界上, 我们用一种精确的精确的计算方法, 展示了游泳机的精度, 我们的精度的精度的精度, 我们的精度, 我们的精度的精度的精度的精度的精度的精度, 我们的精度的精度的精度的精度的精度的精度, 我们的精度的精度的精度的精度, 的精度, 的精度的精度的精度, 我们的精度, 的精度的精度, 的精度的精度, 我们的精度, 的精度, 的精度, 的精度, 的精度, 的精度, 的精度, 的精度, 的精度, 的精度, 我们的精度, 度, 的精度, 的精度, 我们的精度, 的精度, 的精度, 的精度, 度, 度, 度, 度, 度, 度, 度, 度, 的精度, 的精度, 的精度, 度, 度, 度, 度, 度, 的