Single-subject mapping of resting-state brain functional activity to non-imaging phenotypes is a major goal of neuroimaging. The large majority of learning approaches applied today rely either on static representations or on short-term temporal correlations. This is at odds with the nature of brain activity which is dynamic and exhibit both short- and long-range dependencies. Further, new sophisticated deep learning approaches have been developed and validated on single tasks/datasets. The application of these models for the study of a different targets typically require exhaustive hyperparameter search, model engineering and trial and error to obtain competitive results with simpler linear models. This in turn limit their adoption and hinder fair benchmarking in a rapidly developing area of research. To this end, we propose fMRI-S4; a versatile deep learning model for the classification of phenotypes and psychiatric disorders from the timecourses of resting-state functional magnetic resonance imaging scans. fMRI-S4 capture short- and long- range temporal dependencies in the signal using 1D convolutions and the recently introduced state-space models S4. The proposed architecture is lightweight, sample-efficient and robust across tasks/datasets. We validate fMRI-S4 on the tasks of diagnosing major depressive disorder (MDD), autism spectrum disorder (ASD) and sex classifcation on three multi-site rs-fMRI datasets. We show that fMRI-S4 can outperform existing methods on all three tasks and can be trained as a plug&play model without special hyperpararameter tuning for each setting


翻译:对休息状态大脑功能活动进行单科成像成型式的单科脑功能活动的测图是神经成型的一个主要目标。今天应用的绝大多数学习方法都依赖于静态表示或短期时间相关性。这与大脑活动的性质不符,因为大脑活动是动态的,表现出短期和长期的相互依存性。此外,在单一任务/数据集的单一任务/数据集扫描中开发并验证了新的精密深学习方法。应用这些模型研究不同目标通常需要详尽的超光谱搜索、模型工程和试验及错误,才能以更简单的线性模型获得竞争性结果。这反过来又限制了它们的采用,妨碍了在迅速发展的研究领域进行公平的基准设定。为此,我们提议FMRI-S4;一个用于从休息状态功能性磁共振成图像成像扫描过程分类的多功能深度学习模型模型。 FMRI-S4 在所有信号中,使用1D convoluctions和最近推出的S4号国家空间模型,拟议的结构结构是轻松、节能和多功能性数据校准的每个系统校准的系统校正。

0
下载
关闭预览

相关内容

Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员