Accurate and unbiased examinations of skin lesions are critical for early diagnosis and treatment of skin conditions and disorders. Visual features of skin lesions vary significantly because the skin images are collected from patients with different skin colours by using dissimilar type of imaging equipment. Recent studies have reported ensembled convolutional neural networks (CNNs) to classify the images for early diagnosis of skin disorders. However, the practical use of CNNs is limited because the majority of networks are heavyweight and inadequate to use the contextual information. Although lightweight networks (e.g., MobileNetV3 and EfficientNet) were developed to save the computational cost for implementing deep neural networks on mobile devices, not sufficient representation depth restricts their performance. To address the limitations, we introduce a new light and effective neural network, namely HierAttn network. The HierAttn applies a novel strategy to balance the learning local and global features by using a multi-stage attention mechanism in a hierarchical architecture. The efficacy of HierAttn was evaluated by using the dermoscopy images dataset ISIC2019 and smartphone photos dataset PAD-UFES-20. The experimental results show that HierAttn achieves the best top-1 accuracy and AUC among the state-of-the-art light-weight networks. The new light HierAttn network has the potential in promoting the use of deep learning in clinics and allowing patients for early diagnosis of skin disorders with personal devices. The code is available at https://github.com/anthonyweidai/HierAttn.
翻译:对皮肤损伤进行准确和公正的检查对于早期诊断和治疗皮肤状况和失调症至关重要,皮肤损伤的视觉特征差异很大,因为皮肤损伤的视觉特征通过使用不同种类的成像设备从有不同肤色的病人那里收集皮肤图像,最近的研究报告说,通过使用不同种类的成像设备,收集了不同肤色的病人的皮肤图像。最近的研究报告说,通过对皮肤紊乱的早期诊断图像进行分类,综合神经神经网络(CNNs)对卷发性神经网络进行了分类。然而,对CNN的实用使用有限,因为大多数网络都重量过重,不能使用上层结构的多阶段关注机制,因此无法使用全局性信息。虽然开发了轻质网络(例如移动网络、移动网络、高效网络),以节省在移动设备上安装深层神经网络的计算成本,但光度不够深。 为了解决这些局限性,我们采用了新的光度神经网络的光度和智能智能智能光学数据网络,在等级结构中使用多级关注机制来平衡学习本地和全球特征。HierAttn的效能是通过使用温度图像图像数据库和智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能诊断系统,在高级智能网络中可以显示高级智能智能智能智能智能智能智能智能智能智能智能智能智能数据网络中进行。