Astrophysical light curves are particularly challenging data objects due to the intensity and variety of noise contaminating them. Yet, despite the astronomical volumes of light curves available, the majority of algorithms used to process them are still operating on a per-sample basis. To remedy this, we propose a simple Transformer model -- called Denoising Time Series Transformer (DTST) -- and show that it excels at removing the noise and outliers in datasets of time series when trained with a masked objective, even when no clean targets are available. Moreover, the use of self-attention enables rich and illustrative queries into the learned representations. We present experiments on real stellar light curves from the Transiting Exoplanet Space Satellite (TESS), showing advantages of our approach compared to traditional denoising techniques.
翻译:由于受到噪音污染的强度和种类繁多,天体物理光线曲线对数据对象特别具有挑战性。然而,尽管现有光线曲线数量庞大,但用于处理这些曲线的大多数算法仍然在按每个抽样进行操作。为了纠正这种情况,我们提议了一个简单的变形模型 -- -- 称为Denoising 时间序列变异器(DTST) -- -- 并表明,在接受隐蔽目标培训时,在消除时间序列数据集中的噪音和外差方面,即使没有干净的目标,它也十分出色。此外,利用自我注意,可以对所学的表述进行丰富和说明性的查询。我们介绍了从中转的外星空间卫星(TESS)得到的实际恒星光曲线实验,展示了我们与传统脱色技术相比的方法的优势。