项目名称: 微流控法胶体颗粒自组装构建可调控光子晶体的研究

项目编号: No.21303060

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 水玲玲

作者单位: 华南师范大学

项目金额: 25万元

中文摘要: 光子晶体在光电及信息技术领域应用前景广泛。本课题拟开展利用多相微流控方法控制微纳米液珠生产和自组装来构建结构可调控的光子晶体的研究。通过构筑特殊结构的微纳米通道,利用多相流体微流控技术,在微纳米通道中构建单分散的粒径大小可控的微纳米液珠;通过控制微通道的几何结构及通道中的流体特性来控制液珠的自组装构建有序的光子晶体微结构;再固化周期性有序微结构得到光子晶体材料。主要研究内容包括:(1)研究利用微纳米多相流体技术制备单分散的可用于光子晶体自组装结构的液珠的方法;(2)研究控制液珠在微流控芯片中有序自组装的条件及探讨相关的机理;(3)研究自组装光子晶体结构的固化条件;(4)研究外加力场对光子晶体结构的影响。通过这些研究,建立利用多相微流控技术控制胶体颗粒自组装制备光子晶体的新方法,丰富光子晶体制备方法和理论,促进光子晶体更广泛的应用。

中文关键词: 微流控;自组装;光子晶体;液滴;

英文摘要: This project is to build photonic crystal materials by self-assembly of microdroplets using multiphase microfluidic technology. We will design and fabricate micro- and nanofluidic devices to create monodispersed size-on-demand microdroplets. With the help of well-controlled fluids in microfluidic devices, we can control the microdroplets flow to self-assembly to build photonic crystal structure. Tunable photonic crystals could be obtained by solidification of the photonic crystal structures in microfluidic devices. The main content includes: (1) Creation of monodispersed micro- to nano- droplets using micro-nanofluidic devices; (2) Investigation of the flow control in microfluidic devices for droplets self-assembly and its mechanism; (3) Solidification of self-assembly photonic crystal structures; (4) Reversibly control photonic crystal operation through forces, for example electric stimulation of organometallic polymer materials. Through this project, we expect to create photonic crystal materials using multiphase microfluidics, enrich methodology and mechanism of photonic crystals, and widen applications of photonic crystals.

英文关键词: microfluidics;self-assembly;photonic crystal;droplet;

成为VIP会员查看完整内容
0

相关内容

Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
专知会员服务
45+阅读 · 2021年10月10日
专知会员服务
54+阅读 · 2021年9月23日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
84+阅读 · 2021年8月11日
知识图谱本体结构构建论文合集
专知会员服务
102+阅读 · 2019年10月9日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
阿里「猫享」,正式上线
36氪
0+阅读 · 2022年2月25日
事理图谱的构建与应用分论坛|CNCC2021
哈工大SCIR
1+阅读 · 2021年12月14日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
57+阅读 · 2020年7月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
10+阅读 · 2020年11月26日
Arxiv
25+阅读 · 2018年8月19日
Arxiv
19+阅读 · 2018年3月28日
小贴士
相关VIP内容
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
专知会员服务
45+阅读 · 2021年10月10日
专知会员服务
54+阅读 · 2021年9月23日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
84+阅读 · 2021年8月11日
知识图谱本体结构构建论文合集
专知会员服务
102+阅读 · 2019年10月9日
相关资讯
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
阿里「猫享」,正式上线
36氪
0+阅读 · 2022年2月25日
事理图谱的构建与应用分论坛|CNCC2021
哈工大SCIR
1+阅读 · 2021年12月14日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
57+阅读 · 2020年7月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员