Ensemble Kalman inversion represents a powerful technique for inference in statistical models with likelihoods of the form $y \mid x \sim \mathcal{N}(y \mid \mathcal{H}(x),\mathrm{R})$ where the forward operator $\mathcal{H}$ and covariance $\mathrm{R}$ are known. In this article, we generalise ensemble Kalman inversion to models with general likelihoods, $y \mid x \sim p(y \mid x)$ where the likelihood can be sampled from, but its density not necessarily evaluated. We examine the ensemble Kalman performance for both optimisation and uncertainty quantification against fully adaptive approximate Bayesian computation techniques.


翻译:在已知远端操作员$\mathcal{H}(x),\mathrm{R}美元和共差$\mathrm{R}的情况下,Kalman的反转是一种强有力的统计模型推论技术。在本篇文章中,我们笼统地将共和Kalman的反射转换为具有一般可能性的模型,即$y $y mid x\sim p(y\midx)$,其中有可能取样,但其密度不一定得到评估。我们根据完全适应性近似贝叶斯计算技术,检查共性卡尔曼的性能,以优化和不确定性量化。

0
下载
关闭预览

相关内容

专知会员服务
21+阅读 · 2021年9月23日
专知会员服务
81+阅读 · 2021年5月10日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年11月25日
Sparse Sequence-to-Sequence Models
Arxiv
5+阅读 · 2019年5月14日
VIP会员
相关VIP内容
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员