We present a Quality-Diversity benchmark suite for Deep Neuroevolution in Reinforcement Learning domains for robot control. The suite includes the definition of tasks, environments, behavioral descriptors, and fitness. We specify different benchmarks based on the complexity of both the task and the agent controlled by a deep neural network. The benchmark uses standard Quality-Diversity metrics, including coverage, QD-score, maximum fitness, and an archive profile metric to quantify the relation between coverage and fitness. We also present how to quantify the robustness of the solutions with respect to environmental stochasticity by introducing corrected versions of the same metrics. We believe that our benchmark is a valuable tool for the community to compare and improve their findings. The source code is available online: https://github.com/adaptive-intelligent-robotics/QDax
翻译:我们为加强学习的深神经进化中强化学习领域提出了一个质量-多样性基准套件,用于机器人控制。这套套件包括任务、环境、行为描述器和健身性的定义。我们根据任务的复杂性和由深神经网络控制的物剂的复杂程度,指定了不同的基准。基准使用标准质量-多样性衡量标准,包括覆盖面、QD核心、最大健康度和档案剖面衡量标准,以量化覆盖面和健康之间的关系。我们还介绍了如何通过引入校正版的同一指标来量化解决方案在环境随机性方面的稳健性。我们认为,我们的基准是社区比较和改进发现的宝贵工具。源代码可在网上查阅:https://github.com/adaptive-intelligent-robotics/QDax。