A 2-distance list k-coloring of a graph is a proper coloring of the vertices where each vertex has a list of at least k available colors and vertices at distance at most 2 cannot share the same color. We prove the existence of a 2-distance list $(\Delta + 3)$-coloring for graphs with maximum average degree less than $\frac83$ and maximum degree $\Delta\geq 4$ as well as graphs with maximum average degree less than $\frac{14}5$ and maximum degree $\Delta\geq 6$.
翻译:图形的 2- 远列表 k- 彩色是每个顶端都有至少 k 个可用颜色和顶部在距离最多 2 上无法共享相同颜色的顶端的颜色。 我们证明, 最大平均度小于 $\ frac83$和最高度小于 $\ Delta\ geq 4$ 和最高平均度小于 $\ frac{ 14} 5 $ 和最高度小于 $\ Delta\ geq 6 的图形 存在 2 - 远列表 $ (\ Delta + 3) $- 彩色 。