Over the past decade, there has been increasing interest in distributed/parallel algorithms for processing large-scale graphs. By now, we have quite fast algorithms -- usually sublogarithmic-time and often $poly(\log\log n)$-time, or even faster -- for a number of fundamental graph problems in the massively parallel computation (MPC) model. This model is a widely-adopted theoretical abstraction of MapReduce style settings, where a number of machines communicate in an all-to-all manner to process large-scale data. Contributing to this line of work on MPC graph algorithms, we present $poly(\log k) \in poly(\log\log n)$ round MPC algorithms for computing $O(k^{1+{o(1)}})$-spanners in the strongly sublinear regime of local memory. To the best of our knowledge, these are the first sublogarithmic-time MPC algorithms for spanner construction. As primary applications of our spanners, we get two important implications, as follows: -For the MPC setting, we get an $O(\log^2\log n)$-round algorithm for $O(\log^{1+o(1)} n)$ approximation of all pairs shortest paths (APSP) in the near-linear regime of local memory. To the best of our knowledge, this is the first sublogarithmic-time MPC algorithm for distance approximations. -Our result above also extends to the Congested Clique model of distributed computing, with the same round complexity and approximation guarantee. This gives the first sub-logarithmic algorithm for approximating APSP in weighted graphs in the Congested Clique model.
翻译:在过去的十年中,对用于处理大比例图形的分布式/平行算法的兴趣日益浓厚。到现在,我们拥有非常快速的算法 -- -- 通常为子对数计算时间,通常为$poly(log\log n) 美元-时间,甚至更快 -- -- 用于大规模平行计算模型(MPC) 中的一些基本图形问题。这个模型是广泛接受的MapRduce风格设置的理论抽象化。在这种设置中,一些机器以全方位方式进行全方位通信,用于处理大比例数据。为了推动关于 MPC 图表算法的这项工作,我们提出了 $poly(logk) (logk\log\log n) 在 多边(log\ log n) 里程($) 里程(poly) 里程(poly) 里程(c) 里程(k) 里程(k) 里程(c) 里程(c) 里程(c) 里程(ral) 里程(我们得到了最接近的内程(O)里程(C)里程(C)里程(O)里程(l)里程(c)里程(l)里程(c)里程(l)里程(l)里程(l)里(l)里程)里程)里程(c)里程)里程(l)里程(O)里程(l)里程(l)里程(l)里程(l)里程(l)里程(l)里程(l)里程(l)里程(l)里程(l)里程(l)里程)里程(l)里程(l)里程(l)里程)里程)里程)里程)里程(O(O(O(O(O)里程)里程)里程)里程)里程)里程(l-内程(O)里程)里程(O(O(l)里程)里程)里程(O)里程(O)里程(O)里程)里程)里程)里程(O(O(O(C)里程)里程)里程)里程(O(