Conditional Generative Adversarial Networks (cGANs) extend the standard unconditional GAN framework to learning joint data-label distributions from samples, and have been established as powerful generative models capable of generating high-fidelity imagery. A challenge of training such a model lies in properly infusing class information into its generator and discriminator. For the discriminator, class conditioning can be achieved by either (1) directly incorporating labels as input or (2) involving labels in an auxiliary classification loss. In this paper, we show that the former directly aligns the class-conditioned fake-and-real data distributions $P(\text{image}|\text{class})$ ({\em data matching}), while the latter aligns data-conditioned class distributions $P(\text{class}|\text{image})$ ({\em label matching}). Although class separability does not directly translate to sample quality and becomes a burden if classification itself is intrinsically difficult, the discriminator cannot provide useful guidance for the generator if features of distinct classes are mapped to the same point and thus become inseparable. Motivated by this intuition, we propose a Dual Projection GAN (P2GAN) model that learns to balance between {\em data matching} and {\em label matching}. We then propose an improved cGAN model with Auxiliary Classification that directly aligns the fake and real conditionals $P(\text{class}|\text{image})$ by minimizing their $f$-divergence. Experiments on a synthetic Mixture of Gaussian (MoG) dataset and a variety of real-world datasets including CIFAR100, ImageNet, and VGGFace2 demonstrate the efficacy of our proposed models.
翻译:(cGANs) 将标准的无条件 GAN 框架扩展为从样本中学习联合数据标签分布,并被建立为能够生成高不洁图像的强大基因化模型。 培训这种模型的挑战在于将类信息正确纳入到其生成器和导师中。 对歧视者来说, 等级调节可以通过(1) 直接将标签作为输入或(2) 标签纳入辅助分类损失中实现。 在本文中, 我们显示前者直接调整了以类为条件的虚拟和真实数据分布 $P( text{ image{ text{ slasleg}), 并被确定为能生成高不忠实图像图像的强大基因化模型。 后者将数据配置为 $P( text{ clasge{ text{text{image} ), 而后者则将数据配置为以数据配置为主 。 虽然类递解不会直接转换为样本质量, 如果分类本身是十分困难, 则导师无法为生成者提供有用的指导 。 如果将不同类的特征定位定位为同一点, 并因此成为不可分解的 。 (modelalalalalatealation) lialalalationalationalate) mationalate) 。 我们提议了一个真实的GQalationalal 。