Do state-of-the-art natural language understanding models care about word order - one of the most important characteristics of a sequence? Not always! We found 75% to 90% of the correct predictions of BERT-based classifiers, trained on many GLUE tasks, remain constant after input words are randomly shuffled. Despite BERT embeddings are famously contextual, the contribution of each individual word to downstream tasks is almost unchanged even after the word's context is shuffled. BERT-based models are able to exploit superficial cues (e.g. the sentiment of keywords in sentiment analysis; or the word-wise similarity between sequence-pair inputs in natural language inference) to make correct decisions when tokens are arranged in random orders. Encouraging classifiers to capture word order information improves the performance on most GLUE tasks, SQuAD 2.0 and out-of-samples. Our work suggests that many GLUE tasks are not challenging machines to understand the meaning of a sentence.
翻译:最先进的自然语言理解模型是否关注单词顺序? 序列中最重要的特征之一? 并非总能! 我们发现75%至90%的基于 BERT 的分类员的正确预测, 他们接受过许多 GLUE 任务的培训, 在输入单词被随机地打乱后, 仍然保持不变 。 尽管 BERT 嵌入了著名的背景, 但每个单词对下游任务的贡献几乎没有变化 。 基于 BERT 的模型能够利用表面的提示( 例如情绪分析中的关键词的情绪; 或自然语言中顺序- pair 输入的文字相似性 ), 以便在标语按随机顺序排列时做出正确的决定 。 鼓励分类员捕捉字令信息可以改善大多数 GLUE 任务的业绩 。 SQUAD 2.0 和 外标本。 我们的工作表明, 许多 GLUE 任务并不是挑战机器来理解判决的意义 。