Bayesian analyses combine information represented by different terms in a joint Bayesian model. When one or more of the terms is misspecified, it can be helpful to restrict the use of information from suspect model components to modify posterior inference. This is called "cutting feedback", and both the specification and computation of the posterior for such "cut models" is challenging. In this paper, we define cut posterior distributions as solutions to constrained optimization problems, and propose optimization-based variational methods for their computation. These methods are faster than existing Markov chain Monte Carlo (MCMC) approaches for computing cut posterior distributions by an order of magnitude. It is also shown that variational methods allow for the evaluation of computationally intensive conflict checks that can be used to decide whether or not feedback should be cut. Our methods are illustrated in a number of simulated and real examples, including an application where recent methodological advances that combine variational inference and MCMC within the variational optimization are used.
翻译:Bayesian 分析综合了以不同术语在贝叶西亚联合模型中代表的信息。 当一个或多个术语被错误地指定时, 限制使用来自可疑模型组件的信息来修改后推推推, 将“ 切分反馈” 称为“ 切分反馈 ”, 而对于此类“ 切分模型” 的后推法和计算方法的规格和计算方法都具有挑战性。 在本文中, 我们定义后推分配是限制优化问题的解决办法, 并提出基于优化的计算方法。 这些方法比现有的Markov 链 Monte Carlo( MC ) 方法( MCMC ) 更快, 用数量级来计算后推分布。 还表明, 变式方法允许对计算密集的冲突检查进行评估, 用于决定是否应该削减反馈。 我们的方法在一系列模拟和真实的例子中作了说明, 包括应用最近的方法进步, 将变法和 MCMC 结合了变式优化。