During pregnancy, ultrasound examination in the second trimester can assess fetal size according to standardized charts. To achieve a reproducible and accurate measurement, a sonographer needs to identify three standard 2D planes of the fetal anatomy (head, abdomen, femur) and manually mark the key anatomical landmarks on the image for accurate biometry and fetal weight estimation. This can be a time-consuming operator-dependent task, especially for a trainee sonographer. Computer-assisted techniques can help in automating the fetal biometry computation process. In this paper, we present a unified automated framework for estimating all measurements needed for the fetal weight assessment. The proposed framework semantically segments the key fetal anatomies using state-of-the-art segmentation models, followed by region fitting and scale recovery for the biometry estimation. We present an ablation study of segmentation algorithms to show their robustness through 4-fold cross-validation on a dataset of 349 ultrasound standard plane images from 42 pregnancies. Moreover, we show that the network with the best segmentation performance tends to be more accurate for biometry estimation. Furthermore, we demonstrate that the error between clinically measured and predicted fetal biometry is lower than the permissible error during routine clinical measurements.


翻译:在怀孕期间,第二个三月的超声波检查可以根据标准化图表评估胎儿大小。为了实现可复制和准确的测量,一位声学学家需要确定胎儿解剖的三个标准2D平面(头部、腹部、femur),并手工标出精确生物测量和胎儿体重估计图像的关键解剖标志。这可能是一个耗时的操作员任务,特别是对于受训的声学学家来说。计算机辅助技术有助于使胎儿生物测量过程自动化。在本文中,我们提出了一个统一自动框架,用于估算胎儿体重评估所需的所有测量数据。拟议的框架用艺术状态分解模型将关键的胎儿解剖部分定为语义部分,随后是生物测量估计的区域和比例恢复。我们对分解算算算算算算算法进行对比研究,以显示其在42种怀孕的349个超声波标准平面图像上是否稳健。此外,我们显示,在进行最佳分解的临床测算过程中,最低的网络的临床测算结果比我们测算得更准确。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
28+阅读 · 2021年8月2日
模型优化基础,Sayak Paul,67页ppt
专知会员服务
75+阅读 · 2020年6月8日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
10+阅读 · 2018年5月2日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2018年3月14日
Arxiv
7+阅读 · 2017年12月26日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
10+阅读 · 2018年5月2日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员