We present a high-order hybridized discontinuous Galerkin (HDG) method for the fully coupled time-dependent Stokes-Darcy-transport problem where the fluid viscosity and source/sink terms depend on the concentration and the dispersion/diffusion tensor depends on the fluid velocity. This HDG method is such that the discrete flow equations are compatible with the discrete transport equation. Furthermore, the HDG method guarantees strong mass conservation in the $H^{\rm div}$ sense and naturally treats the interface conditions between the Stokes and Darcy regions via facet variables. We employ a linearizing decoupling strategy where the Stokes/Darcy and the transport equations are solved sequentially by time-lagging the concentration. We prove well-posedness and optimal a priori error estimates for the velocity and the concentration in the energy norm. We present numerical examples that respect compatibility of the flow and transport discretizations and demonstrate that the discrete solution is robust with respect to the problem parameters.
翻译:我们提出了一个高度分级混合不连续的Galerkin(HDG)方法,用于完全结合时间的Stokes-Darcy-运输问题,其中流体粘度和源/汇条件取决于浓度,扩散/扩散/扩散振素取决于流体速度。这种HDG方法使离散流动方程式与离散运输方程式兼容。此外,HDG方法保证了以$H ⁇ rm div} 表示的高度质量保护,并自然地通过表面变量处理斯托克斯和达西地区之间的界面条件。我们采用一种线性脱钩战略,在此战略中,斯托克斯/Darcy和运输方程式通过时间拖动浓缩顺序解决。我们证明,对速度和能源规范中的集中度的预先误差估计是很好的和最理想的。我们提出了尊重流动与运输离散化的兼容性的数字实例,并表明离散解决办法在问题参数方面是稳健的。